A perturbation of the geometric spectral sequence in Khovanov homology

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Spectral Sequence from Khovanov Homology to Heegaard Floer Homology

Ozsváth and Szabó show in [10] that there is a spectral sequence whose E term is g Kh(L), and which converges to d HF (−Σ(L)). We prove that the E term of this spectral sequence is an invariant of the link L for all k ≥ 2. If L is a transverse link in (S, ξstd), then we show that Plamenevskaya’s transverse invariant ψ(L) gives rise to a transverse invariant of L in the E term for each k ≥ 2.

متن کامل

A SPECTRAL SEQUENCE FOR KHOVANOV HOMOLOGY WITH AN APPLICATION TO (3, q)-TORUS LINKS

A spectral sequence converging to Khovanov homology is constructed which is applied to calculate the rational Khovanov homology of (3, q)-torus links.

متن کامل

Khovanov Homology

A gap was found; the paper needs several corrections.

متن کامل

Khovanov Homology Detects the Trefoils

We prove that Khovanov homology detects the trefoils. Our proof incorporates an array of ideas in Floer homology and contact geometry. It uses open books; the contact invariants we defined in the instanton Floer setting; a bypass exact triangle in sutured instanton homology, proven here; and Kronheimer and Mrowka’s spectral sequence relating Khovanov homology with singular instanton knot homolo...

متن کامل

Odd Khovanov Homology

We describe an invariant of links in S which is closely related to Khovanov’s Jones polynomial homology. Our construction replaces the symmetric algebra appearing in Khovanov’s definition with an exterior algebra. The two invariants have the same reduction modulo 2, but differ over Q. There is a reduced version which is a link invariant whose graded Euler characteristic is the normalized Jones ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Quantum Topology

سال: 2017

ISSN: 1663-487X

DOI: 10.4171/qt/97